NHẠC THIẾU NHI VUI NHỘN HAY NHẤT CON BÒ CON GÀ TRỐNG
82
Ajay Kumar1, Rishabh Shukla1, Akhilesh Pandey2, Sandeep Dalal2, M. Miryala3, K. Ueno3, M. Murakami3, & R. S. Dhaka1,a)
ChooseTop of pageABSTRACTINTRODUCTION EXPERIMENTALRESULTS & DISCUSSIONCONCLUSIONREFERENCESCITING ARTICLES


Tailoring the physical properties of transition metal oxides through the strain engineering in the case of epitaxial thin films has become the versatile technique and they show an unusual phenomenon at the interface in the nanoscale range.1–31. A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the LaAlO 3/SrTiO 3 heterointerface,” Nature 427, 423 (2004). Https://doi.org/10.1038/nature023082. D. Fuchs, C. Pinta, T. Schwarz, p Schweiss, p Nagel, S. Schuppler, R. Schneider, M. Merz, G. Roth, and H. V. Löhneysen, “Ferromagnetic order in epitaxially strained LaCoO 3 thin films,” Phys. Rev. B 75, 144402 (2007). Https://doi.org/10.1103/PhysRevB.75.1444023. D. Fuchs, T. Schwarz, O. Morán, p Schweiss, and R. Schneider, “Finite-size shift of the Curie temperature of ferromagnetic lanthanum cobaltite thin films,” Phys. Rev. B 71, 092406 (2005). Https://doi.org/10.1103/PhysRevB.71.092406 Unlike their bulk counterpart, the strain caused by the lattice mismatch between the thin film và the substrate can induce the novel phenomenon at the interface,1–61. A. Ohtomo và H. Y. Hwang, “A high-mobility electron gas at the LaAlO 3/SrTiO 3 heterointerface,” Nature 427, 423 (2004). Https://doi.org/10.1038/nature023082. D. Fuchs, C. Pinta, T. Schwarz, p. Schweiss, p. Nagel, S. Schuppler, R. Schneider, M. Merz, G. Roth, and H. V. Löhneysen, “Ferromagnetic order in epitaxially strained LaCoO 3 thin films,” Phys. Rev. B 75, 144402 (2007). Https://doi.org/10.1103/PhysRevB.75.1444023. D. Fuchs, T. Schwarz, O. Morán, p Schweiss, & R. Schneider, “Finite-size shift of the Curie temperature of ferromagnetic lanthanum cobaltite thin films,” Phys. Rev. B 71, 092406 (2005). Https://doi.org/10.1103/PhysRevB.71.0924064. J.-P. Locquet, J. Perret, J. Fompeyrine, E. Mächler, J. W. Seo, và G. V. Tendeloo, “Doubling the critical temperature of La 1.9Sr 0.1CuO 4 using epitaxial strain,” Nature 394, 453 (1998). Https://doi.org/10.1038/288105. J. H. Haeni, p Irvin, W. Chang, R. Uecker, p. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, “Room-temperature ferroelectricity in strained SrTiO 3,” Nature 430, 758 (2004). Https://doi.org/10.1038/nature027736. J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J.-W. Kim, p J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, p. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, p Schiffer, V. Gopalan, E. J. Halperin, và D. G. Schlom, “A strong ferroelectric ferromagnet created by means of spin–lattice coupling,” Nature 466, 954 (2010). Https://doi.org/10.1038/nature09331 which plays a crucial role in device applications77. J. Mannhart và D. G. Schlom, “Oxide interfaces—An opportunity for electronics,” Science 327, 1607 (2010). Https://doi.org/10.1126/science.1181862 such as solid oxide fuel cells.88. M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, và J. Fleig, “Tensile lattice strain accelerates oxygen surface exchange & diffusion in La 1 − xSr xCoO 3 − δ thin films,” ACS Nano 7, 3276 (2013). Https://doi.org/10.1021/nn305987x A close synchronization between the substrate induced strain and oxygen non-stoichiometry has been recently established in these compounds, where controlling such parameters in the bulk khung is a major challenge.9–119. J. R. Petrie, C. Mitra, H. Jeen, W. S. Choi, T. L. Meyer, F. A. Reboredo, J. W. Freeland, G. Eres, và H. N. Lee, “Strain control of oxygen vacancies in epitaxial strontium cobaltite films,” Adv. Funct. Mater. 26, 1564 (2016). Https://doi.org/10.1002/adfm.20150486810. A. Herklotz, D. Lee, E.-J. Guo, T. L. Meyer, J. R. Petrie, và H. N. Lee, “Strain coupling of oxygen non-stoichiometry in perovskite thin films,” J. Phys. Condens. Matter 29, 493001 (2017). Https://doi.org/10.1088/1361-648X/aa949b11. U. Aschauer, R. Pfenninger, S. M. Selbach, T. Grande, & N. A. Spaldin, “Strain-controlled oxygen vacancy formation & ordering in CaMnO 3,” Phys. Rev. B 88, 054111 (2013). Https://doi.org/10.1103/PhysRevB.88.054111 In this family, perovskite oxides of type ABO 3 (where A represents the rare earth/alkali earth metals và B represents the transition metals) have been widely explored due lớn their stable structure and availability of the wide range of structurally alike single crystalline substrates for the heteroepitaxial growth. The misfit induced strain in these compounds is widely known khổng lồ modify the BO 6 octahedron, i.e., a change in the B–O–B bond angle and the B–O bond length, where the degree và direction of the octahedral rotation are determined by the magnitude & sign of the biaxial strain.1212. A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, “Misfit strain accommodation in epitaxial ABO 3 perovskites: Lattice rotations & lattice modulations,” Phys. Rev. B 83, 064101 (2011). Https://doi.org/10.1103/PhysRevB.83.064101 This octahedral distortion effectively perturbs the energy scales of lattice, spin, charge, và orbital degrees of freedom, which control the effective correlation (U/W) between them and alter most of their electronic and magnetic properties.13,1413. R. S. Dhaka, T. Das, N. C. Plumb, Z. Ristic, W. Kong, C. E. Matt, N. Xu, K. Dolui, E. Razzoli, M. Medarde, L. Patthey, M. Shi, M. Radović, & J. Mesot, “Tuning the metal-insulator transition in NdNiO 3 heterostructures via Fermi surface instability và spin fluctuations,” Phys. Rev. B 92, 035127 (2015). Https://doi.org/10.1103/PhysRevB.92.03512714. J. M. Rondinelli and N. A. Spaldin, “Structure và properties of functional oxide thin films: Insights from electronic-structure calculations,” Adv. Mater. 23, 3363 (2011). Https://doi.org/10.1002/adma.201101152 For example, an electronic bandwidth can be written to lớn the first approximation as W ∝ cos ϕ/ d 3.5, where ϕ= ( π − θ)/2 is the buckling deviation of the B–O–B bond angle θ from 180 ° & d is the B–O bond length.1515. M. Medarde, J. Mesot, p. Lacorre, S. Rosenkranz, p Fischer, và K. Gobrecht, “High-pressure neutron-diffraction study of the metallization process in PrNiO 3,” Phys. Rev. B 52, 9248 (1995). Https://doi.org/10.1103/PhysRevB.52.9248 The substrate induced compressive strain is known khổng lồ reduce the electronic bandgap due khổng lồ enhancement in the strength of hybridization between the transition metal d & O 2 phường orbitals, while the opposite trend is expected in the case of tensile strain due to the suppression of this p- d hybridization.1616. T. Huang, Y. Wang, H. Li, M. Wang, Y. Lyu, S. Shen, N. Lu, Q. He, and phường Yu, “Tuning the electronic properties of epitaxial strained CaFeO 3 − δ thin films,” Appl. Phys. Lett. 114, 221907 (2019). Https://doi.org/10.1063/1.5098025
Bạn đang xem: Nhạc thiếu nhi vui nhộn hay nhất con bò con gà trống
We study the effect of substrate induced strain on the structural, transport, optical, and electronic properties of Sr 2CoNbO 6 double perovskite thin films. The reciprocal space mapping, ϕ-scan, và high-resolution θ–2 θ scans of x-ray diffraction patterns suggest the epitaxial nature and high-quality of the films deposited on various single crystal ceramic substrates. A systematic enhancement in the dc electronic conductivity is observed with an increase in the compressive strain while there is a sharp reduction in the case of tensile strain, which is further supported by a change in the activation energy & the mật độ trùng lặp từ khóa of states near the Fermi level. The optical bandgap extracted from two distinct absorption bands, observed in the visible–near infrared spectroscopy, shows a non-monotonic behavior in the case of compressive strain while there is significant enhancement with tensile strain. Unlike the bulk Sr 2CoNbO 6 (Co 3 + và Nb 5 +), we observe different valence states of Co, namely, 2+, 3+, and 4+, và tetravalent Nb (4 d 1) in the x-ray photoemission spectroscopy measurements. Moreover, a reduction in the average oxygen valency with the compressive strain due khổng lồ enhancement in the covalent character of Co/Nb–O bond is evident. Interestingly, we observe sharp Raman active modes in these thin films, which indicates a significant enhancement in structural ordering as compared to lớn the bulk.ChooseTop of pageABSTRACTINTRODUCTION EXPERIMENTALRESULTS & DISCUSSIONCONCLUSIONREFERENCESCITING ARTICLES
Xem thêm: Những Điều Cần Biết Khi Mua Điện Thoại Mới, Những Yếu Tố Cần Lưu Ý Khi Mua Điện Thoại Mới


Tailoring the physical properties of transition metal oxides through the strain engineering in the case of epitaxial thin films has become the versatile technique and they show an unusual phenomenon at the interface in the nanoscale range.1–31. A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the LaAlO 3/SrTiO 3 heterointerface,” Nature 427, 423 (2004). Https://doi.org/10.1038/nature023082. D. Fuchs, C. Pinta, T. Schwarz, p Schweiss, p Nagel, S. Schuppler, R. Schneider, M. Merz, G. Roth, and H. V. Löhneysen, “Ferromagnetic order in epitaxially strained LaCoO 3 thin films,” Phys. Rev. B 75, 144402 (2007). Https://doi.org/10.1103/PhysRevB.75.1444023. D. Fuchs, T. Schwarz, O. Morán, p Schweiss, and R. Schneider, “Finite-size shift of the Curie temperature of ferromagnetic lanthanum cobaltite thin films,” Phys. Rev. B 71, 092406 (2005). Https://doi.org/10.1103/PhysRevB.71.092406 Unlike their bulk counterpart, the strain caused by the lattice mismatch between the thin film và the substrate can induce the novel phenomenon at the interface,1–61. A. Ohtomo và H. Y. Hwang, “A high-mobility electron gas at the LaAlO 3/SrTiO 3 heterointerface,” Nature 427, 423 (2004). Https://doi.org/10.1038/nature023082. D. Fuchs, C. Pinta, T. Schwarz, p. Schweiss, p. Nagel, S. Schuppler, R. Schneider, M. Merz, G. Roth, and H. V. Löhneysen, “Ferromagnetic order in epitaxially strained LaCoO 3 thin films,” Phys. Rev. B 75, 144402 (2007). Https://doi.org/10.1103/PhysRevB.75.1444023. D. Fuchs, T. Schwarz, O. Morán, p Schweiss, & R. Schneider, “Finite-size shift of the Curie temperature of ferromagnetic lanthanum cobaltite thin films,” Phys. Rev. B 71, 092406 (2005). Https://doi.org/10.1103/PhysRevB.71.0924064. J.-P. Locquet, J. Perret, J. Fompeyrine, E. Mächler, J. W. Seo, và G. V. Tendeloo, “Doubling the critical temperature of La 1.9Sr 0.1CuO 4 using epitaxial strain,” Nature 394, 453 (1998). Https://doi.org/10.1038/288105. J. H. Haeni, p Irvin, W. Chang, R. Uecker, p. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, “Room-temperature ferroelectricity in strained SrTiO 3,” Nature 430, 758 (2004). Https://doi.org/10.1038/nature027736. J. H. Lee, L. Fang, E. Vlahos, X. Ke, Y. W. Jung, L. F. Kourkoutis, J.-W. Kim, p J. Ryan, T. Heeg, M. Roeckerath, V. Goian, M. Bernhagen, R. Uecker, p. C. Hammel, K. M. Rabe, S. Kamba, J. Schubert, J. W. Freeland, D. A. Muller, C. J. Fennie, p Schiffer, V. Gopalan, E. J. Halperin, và D. G. Schlom, “A strong ferroelectric ferromagnet created by means of spin–lattice coupling,” Nature 466, 954 (2010). Https://doi.org/10.1038/nature09331 which plays a crucial role in device applications77. J. Mannhart và D. G. Schlom, “Oxide interfaces—An opportunity for electronics,” Science 327, 1607 (2010). Https://doi.org/10.1126/science.1181862 such as solid oxide fuel cells.88. M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, và J. Fleig, “Tensile lattice strain accelerates oxygen surface exchange & diffusion in La 1 − xSr xCoO 3 − δ thin films,” ACS Nano 7, 3276 (2013). Https://doi.org/10.1021/nn305987x A close synchronization between the substrate induced strain and oxygen non-stoichiometry has been recently established in these compounds, where controlling such parameters in the bulk khung is a major challenge.9–119. J. R. Petrie, C. Mitra, H. Jeen, W. S. Choi, T. L. Meyer, F. A. Reboredo, J. W. Freeland, G. Eres, và H. N. Lee, “Strain control of oxygen vacancies in epitaxial strontium cobaltite films,” Adv. Funct. Mater. 26, 1564 (2016). Https://doi.org/10.1002/adfm.20150486810. A. Herklotz, D. Lee, E.-J. Guo, T. L. Meyer, J. R. Petrie, và H. N. Lee, “Strain coupling of oxygen non-stoichiometry in perovskite thin films,” J. Phys. Condens. Matter 29, 493001 (2017). Https://doi.org/10.1088/1361-648X/aa949b11. U. Aschauer, R. Pfenninger, S. M. Selbach, T. Grande, & N. A. Spaldin, “Strain-controlled oxygen vacancy formation & ordering in CaMnO 3,” Phys. Rev. B 88, 054111 (2013). Https://doi.org/10.1103/PhysRevB.88.054111 In this family, perovskite oxides of type ABO 3 (where A represents the rare earth/alkali earth metals và B represents the transition metals) have been widely explored due lớn their stable structure and availability of the wide range of structurally alike single crystalline substrates for the heteroepitaxial growth. The misfit induced strain in these compounds is widely known khổng lồ modify the BO 6 octahedron, i.e., a change in the B–O–B bond angle and the B–O bond length, where the degree và direction of the octahedral rotation are determined by the magnitude & sign of the biaxial strain.1212. A. Vailionis, H. Boschker, W. Siemons, E. P. Houwman, D. H. A. Blank, G. Rijnders, and G. Koster, “Misfit strain accommodation in epitaxial ABO 3 perovskites: Lattice rotations & lattice modulations,” Phys. Rev. B 83, 064101 (2011). Https://doi.org/10.1103/PhysRevB.83.064101 This octahedral distortion effectively perturbs the energy scales of lattice, spin, charge, và orbital degrees of freedom, which control the effective correlation (U/W) between them and alter most of their electronic and magnetic properties.13,1413. R. S. Dhaka, T. Das, N. C. Plumb, Z. Ristic, W. Kong, C. E. Matt, N. Xu, K. Dolui, E. Razzoli, M. Medarde, L. Patthey, M. Shi, M. Radović, & J. Mesot, “Tuning the metal-insulator transition in NdNiO 3 heterostructures via Fermi surface instability và spin fluctuations,” Phys. Rev. B 92, 035127 (2015). Https://doi.org/10.1103/PhysRevB.92.03512714. J. M. Rondinelli and N. A. Spaldin, “Structure và properties of functional oxide thin films: Insights from electronic-structure calculations,” Adv. Mater. 23, 3363 (2011). Https://doi.org/10.1002/adma.201101152 For example, an electronic bandwidth can be written to lớn the first approximation as W ∝ cos ϕ/ d 3.5, where ϕ= ( π − θ)/2 is the buckling deviation of the B–O–B bond angle θ from 180 ° & d is the B–O bond length.1515. M. Medarde, J. Mesot, p. Lacorre, S. Rosenkranz, p Fischer, và K. Gobrecht, “High-pressure neutron-diffraction study of the metallization process in PrNiO 3,” Phys. Rev. B 52, 9248 (1995). Https://doi.org/10.1103/PhysRevB.52.9248 The substrate induced compressive strain is known khổng lồ reduce the electronic bandgap due khổng lồ enhancement in the strength of hybridization between the transition metal d & O 2 phường orbitals, while the opposite trend is expected in the case of tensile strain due to the suppression of this p- d hybridization.1616. T. Huang, Y. Wang, H. Li, M. Wang, Y. Lyu, S. Shen, N. Lu, Q. He, and phường Yu, “Tuning the electronic properties of epitaxial strained CaFeO 3 − δ thin films,” Appl. Phys. Lett. 114, 221907 (2019). Https://doi.org/10.1063/1.5098025